
SHOULDER

Biomechanical evaluation of four different
transosseous-equivalent/suture bridge rotator cuff repairs

Michael Maguire • Jerome Goldberg •

Desmond Bokor • Nicky Bertollo • Matthew Henry Pelletier •

Wade Harper • William R. Walsh

Received: 3 November 2010 / Accepted: 1 February 2011
! Springer-Verlag 2011

Abstract
Purpose Evaluate the biomechanical behavior of four

variants of the transosseous-equivalent/suture bridge (TOE/

SB) repair.
Methods Four suture bridge (SB) constructs were created

using 24 sheep infraspinatus tendon-humerus constructs

(n = 6 per technique). The groups were (1) Knotted
Standard Suture Bridge (Standard SB)—suture bridge with

two medial mattress stitches, (2) Knotted Double Suture

Bridge (Double SB)—four medial mattress stitches, (3)
Untied Suture Bridge with Medial FT Anchors (Untied SB

with FT)—two medial mattress stitches without knots, and

(4) Untied Suture Bridge with PushLocks (Untied SB with
Pushlocks)—two medial mattress stitches without knots.

The contact area footprint was measured with an electronic

pressure film prior to dynamic mechanical testing for
gapping and testing to failure.

Results The Double SB produced the greatest contact

area footprint compared to the other techniques, which did
not differ. The Double SB repair with a mean failure load

of 456.9N was significantly stronger than the Untied SB
with Pushlocks repair at 300N (P = 0.023), the standard

SB repair at 295N (P = 0.019), and lastly the Untied SB

with FT repair at 284N (P = 0.011). No differences were
detected between the two mattress stitch standard SB repair

with knots and the knotless two mattress stitch repairs

(Untied SB with FT and Untied SB with Pushlocks). Gaps
developed during cyclic loading in all repairs apart from

the Double SB repair.

Conclusions The transosseous-equivalent/suture bridge
repair with 4 stitches tied in the medial row and maximal

lateral suture strand utilization (Double SB) outperformed

all other repairs in terms of failure load, tendon–bone
contact, and gapping characteristics. The presence of knots

in the medial row did not change tendon fixation with

respect to failure load, contact area or gapping
characteristics.
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Introduction

The transosseous-equivalent/suture bridge (TOE/SB) rota-

tor cuff repair was described by Park et al. [33]. The
technique involves using medial row anchors at the hum-

eral articular cartilage edge and tying mattress stitches to

secure the cuff tissue. The free ends of the medial suture
limbs are preserved and brought laterally over the bursal

surface of the remaining unsecured cuff tissue. The suture

limbs are fastened with anchors placed in a distal-lateral
position over the side of the greater tuberosity to create

downward pressure and recreated the rotator cuff footprint.

Rotator cuff repair integrity correlates with improved
function and superior rotator cuff power postoperatively [3,

4, 12, 13, 15, 22]. Most patients with an intact rotator cuff

ultimately have decreased pain and better function
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following surgery for rotator cuff tears [18, 44]. In contrast,

patients with persistent symptoms following rotator cuff
repair are more likely to have a recurrent tear [25, 45]. The

surgeon should optimize the repair biomechanically which

can potentially enhance healing biology by creating greater
tendon to bone contact surface area and pressure [9].

Although work in animal models have shown promise in

enhancing tendon healing biologically, [5, 20, 23, 27, 37]
at present, surgeons still rely on the mechanical strength of

a repair to allow tendon-bone healing to occur during
rehabilitation.

Research into the optimal rotator cuff construct with the

greatest strength at time zero has been done and continues.
[7, 11, 15, 40, 42] Numerous studies report the superior

initial rotator cuff repair characteristics of traditional

double-row when compared to single-row fixation [24, 28,
29, 41]. As techniques have evolved through single row,

transosseous repair, double-row repair, and finally tran-

sosseous-equivalent repairs, stronger constructs have
appeared. Several versions of the TOE/SB technique exist

and some have been tested biomechanically [34]. It is

unclear however, if one suture bridge construct offers a
biomechanical advantage over another. The null hypothesis

for this study was that there would be no difference in the

biomechanical properties of 4 different TOE/SB tech-
niques.

Materials and methods

Twenty-four (24) infraspinatus tendon-humerus constructs
were harvested from 12 (2-year old) sheep. The infraspi-

natus was detached from its insertion using a scalpel and

the exposed 10 mm 9 20 mm footprint burred. Four dif-
ferent TOE/SB rotator cuff repairs were randomly per-

formed 6 times by the same surgeon (MM). The first repair

type (Fig. 1) was a Knotted Standard Suture Bridge
(Standard SB) and utilized two medial 5.5 mm Bio-Cork-

screw FT Anchors (Arthrex, Napes FL) with one No 2

FiberWire suture (Arthrex, Napes FL) from each anchor,
passed through the tendon with a Mayo needle, and tied in

a mattress fashion. A Weston Knot (sliding knot) was used

to simulate an arthroscopic repair. Two 3.5-mm PushLock
Anchors (Arthrex, Naples, FL) were used to secure the 4

suture strands laterally after crossing one strand from each

medial anchor. The spacing between the anchors was
1.5 cm. The second repair type (Fig. 1) was a Knotted

Double Suture Bridge (Double SB) and was similar to the

first except that both sutures from each double-loaded
medial anchor were used to produce 4 medial mattress

stitches. A Weston knot was utilized to tie the medial row.

All 8 suture strands were passed laterally and secured with
two 3.5 mm PushLock Anchors after crossing half of the

sutures. Spacing between the anchors was 1.5 cm. The

third repair (Fig. 1) was a knotless repair. This construct

was an Untied Suture Bridge with Medial FT Anchors
(Untied SB with FT) and utilized two medial 5.5 mm Bio-

Corkscrew FT Anchors (Arthrex, Naples, FL) single-loa-

ded with No. 2 FiberWire. The sutures from the medial row
anchors were not tied, but simply passed through the

infraspinatus tendon creating a mattress stitch without a

knot. One strand from each medial anchor was crossed over
and secured laterally with two 3.5 mm PushLock Anchors

with spacing of 1.5 cm between anchors. The fourth repair

(Fig. 1) was an Untied Suture Bridge with PushLocks
(Untied SB with Pushlocks). The Untied SB with Push-

locks was also a completely knotless construct and used

two 3.5 mm PushLock Anchors medially and two 3.5 mm

Fig. 1 Suture Constructs tested in this study. a Standard SB—
standard suture bridge with knots tied medially. b Double SB—
double suture bridge with knots tied medially. c Untied Suture Bridge
representing the construct with either FT Anchors or PushLocks.
d Detail showing PushLock suture fixation used for Untied SB with
Pushlocks. e Detail showing PushLock and FT anchor configuration
used for all other constructs
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PushLocks laterally, with all other aspects of the repair

identical to repair type three (Untied SB with FT). The only
difference between type three (Untied SB with FT) and

four (Untied SB with Pushlocks) repairs other than the

medial row anchor type was that the suture did not slide
through the eyelet of the medial row anchors in group four

(Untied SB with Pushlocks) due to the anchor design.

The contact area between the tendon and the bone was
measured using an electronic pressure sensor technique [2,

19, 21] (I-Scan 6900, TekScan, South Boston) followed by
mechanical testing. A single sensing tab of the model 6900

sensor was placed at the interface between the tendon and

bone during the repair with transmission exiting distally
between the lateral row. Data were taken for 30 s after

completion of the repair. This pressure film has a sensing

area of 14 mm x14 mm. The maximum contact area was
obtained for 4 samples from each technique.

Mechanical testing was performed on 6 reconstructions

from each group. The humerus was fixed in a low melting
point alloy and the muscle belly of the infraspinatus

secured using brass grips and liquid carbon dioxide

(cryogrips) to freeze the muscle belly [31, 32]. Mechanical
testing was performed using a calibrated servohydraulic

testing machine (MTS, Eden Prairie, MN). The repairs

were loaded between 10 and 100N at 1 Hz for 500 cycles
to see if any gaps developed at the interface. The gapping

was assessed with a digital calliper at the tendon–bone

interface on the bursal side following testing. Cyclic creep
was also assessed based on changes in actuator position

throughout testing. Samples were tested in uniaxial tension

to failure at a rate of 33 mm/sec following cyclical testing.
Failure was defined as decreasing load with increasing

displacement. The peak load, stiffness in the linear region,

and failure mechanism were noted.

Statistical analysis

Contact area and mechanical data for all constructs were

reviewed using an analysis of variance (ANOVA) followed
by post hoc testing using the Games Howell criterion for

multiple comparisons. All statistical analysis was performed

with SPSS for Windows (SPSS Inc., Chicago, IL) and dif-
ferences were considered significant where P\ 0.05.

Results

The mean contact area of the Untied SB with Pushlocks
was similar to the contact area of the Untied SB with FT.

The standard SB contact area was slightly higher although

no significant differences were detected between any of
these three constructs (Fig. 2). The Double SB repair

produced a contact area of 1.47 cm2, which was greater

than all other repairs (P\ 0.05).
Cyclical testing of the repairs did not reveal any dif-

ferences between the 4 groups with mean creep values

between 6.47 mm and 10.2 mm for all constructs (Fig. 3).
Gap formation on the bursal side was not visible in the

Double SB repairs during cyclical testing while small gaps

(1-3 mm) were noted in the other groups.
Destructive failure did however reveal significant find-

ings. The Double SB repairs with all medial suture limbs

tied were the strongest (Fig. 4). The Double SB repair
failed at 457N and was significantly stronger than the

Untied SB with Pushlocks, standard SB, and Untied SB

Fig. 2 Footprint contact area between tendon and bone. *P\ 0.05,
when compared to all other repairs

Fig. 3 Results of creep measurements during cyclic loading

Fig. 4 Mechanical testing results; failure loads. *P\ 0.05, when
compared to all other designs
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with FT which failed at 300N, 295N, and 284N, respec-

tively (P\ 0.05). No differences were detected between
the Untied SB with Pushlocks, standard SB, and Untied SB

with FT repairs (n.s.). While the stiffness (Fig. 5) of the

Double SB was greatest, no statistical differences were
noted between any of the repair techniques (n.s.).

The predominate failure mode was tendon tearing through

the suture material. In one of the Double SB repairs, the
sutures pulled free of one PushLock Anchor and tore

through the tendon on the other side. No statistical differ-

ences were noted (n.s.).

Discussion

The present study has two primary findings. These are the

increased failure loads achieved with the Double SB repair
when compared to the other three repairs and the similar-

ities in the performance of the Untied SB with Pushlocks &

Untied SB with FT repairs.
One of the goals of any reconstructive surgery should be

to restore anatomy. Mechanical factors which may alter

tendon healing include footprint coverage, contact pressure
[1], and decreased motion at the bone–tendon interface

[36]. All of these factors can potentially be controlled by

the surgeon using a TOE/SB repair [9]. In order to achieve
biological healing, a rotator cuff repair must be able to

withstand the inherent forces generated by the muscle as

well as during the rehabilitation process. The maximal
force reported to be generated by the supraspinatus is 302N

[6]. While many repairs do not achieve this static load

threshold, Park et al. [34] report the TOE/SB repair to
achieve failure load of 443N with cadaveric shoulders.

Spang et al. [42] have used the ovine model to evaluate

suture bridge repairs. The results of stiffness were similar
to the current study and failure loads fell between those of

the present Double SB and the other three repairs. Pauly

et al. [35] have recently utilized a porcine model to show
greater failure loads of double mattress constructs. The

ovine model presented here demonstrates continuity of

results with slightly higher failure loads. We have included

untied constructs to investigate the influence of knots in our
measured parameters. The Double SB was the superior

construct in terms of load to failure while all were equiv-

alent in stiffness and cyclical testing. The superior load to
failure of the quadruple knotted Double SB may be related

to utilizing all 4 mattress stitches medially providing a

more secure grasping of the tendon. The tendon suture
interface has been shown to be the weak link in rotator cuff

repair [16, 38] and was again confirmed by this study.
Research into double-row rotator cuff repair suggests

the medial row contributes most to the overall strength [39,

43]. Certainly, increasing the number of suture strands
across tendon repairs improves the strength of repair by

sharing tensile load as shown in our Double SB. This repair

also exhibited the greatest contact area, with a significant
difference noted between the Untied SB with FT repair and

approaching significance for the Untied SB with Pushlocks

repair (P = 0.072). The downside to this repair however is
whether the multiple mattress stitches and increased num-

ber of bursal sided compressive strands could be detri-

mental to the vascularity of the cuff tendon [8], this
however is beyond the scope of our study.

Spang et al. [42] have suggested that knot tying may not

be necessary for arthroscopic procedures and have rec-
ommended future work to evaluate the need for knots in

this type of construct. In the present study, tying two stit-

ches in the medial row of the standard SB did not affect the
cyclic data, or contact area compared to the similar but

knotless medial Untied SB with Pushlocks & Untied SB

with FT repairs. The ultimate load of the knotless medial
row repairs did not differ. These data do not clearly dem-

onstrate whether medial row knot tying provides any

advantage in ‘‘Suture Bridge’’ repairs when comparing the
three standard two-stitch suture bridge constructs used in

this study. The Double SB however, with its increased

number of suture strands (8 versus 4 for all other repairs)
and knots (4 medial tied stitches versus 2 stitches in all

other repairs) was biomechanically superior. The 4 knots of

Double SB TOE/SB repair appeared to be a more stable
construct with no discernable tendon movement or bursal

sided gap formation during loading.

There were several limitations to this study. The sheep
infraspinatus-humerus construct was used as a model of the

human supraspinatus tendons. The sheep infraspinatus

tendon is however well described by Gerber [14] and
others [10, 26, 30] as a good model for rotator cuff repair.

We chose this as an alternative to cadaveric tissue which is

often of varying age and quality. The sheep infraspinatus
tendon has similar size, shape, and mechanical properties

to the human supraspinatus tendon and is almost indistin-

guishable on histological examination, making it a realistic
model for evaluating surgical techniques of rotator cuff

Fig. 5 Stiffness within the linear region of load–displacement curve
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repair as applicable to humans [17]. The absolute values

for load to failure may however be different compared to
humans considering differences in activity and levels and

tissue quality. It should be noted that the failure loads

generated with healthy rotator cuff tissue without degen-
eration is likely to be higher than that of a more likely

clinical scenario, with degeneration. Additionally, due to

the bony anatomy and the fact that the infraspinatus was
used, the lateral anchors were not placed in an extreme

over the edge position as described by Park et al. [33]. This
positioning may have affected the strength of the repairs.

Finally, the superior repair construct of four medial stitches

with knot tying unfortunately was not compared directly to
a similar construct with four stitches without knot tying.

This technique was not considered in the current study as it

was not used in our surgical practices. Six reconstruction
from each group were tested mechanically while only four

were evaluated for contact area, raising the number of

shoulders could have identified more differences between
contact area characteristics. While an increase in sample

size could have been performed, statistical evaluations

revealed a large sample size would have been required to
detect difference between the 4 knot repairs (approximately

162 with an alpha of 0.05 and beta of 0.8) which was

considered unrealistic.
Our findings show the superior failure load and greater

contact area when tying 4 stitches in the medial row. When

comparing standard suture bridge constructs with untied
constructs our findings follow on from Sprang’s work and

suggestions for future evaluation, demonstrating that there

is no significant difference in strength, gap formation, and
footprint stability whether the medial row has tied knots or

simply passed through the tendon and been anchored lat-

erally. For those surgeons performing a double-row cuff
repair without tying the medial row sutures as a horizontal

mattress, our study offers reassurance that the fixation of

the rotator cuff tendon has not been compromised, despite
the surgical technique being easier and quicker to perform.

Conclusions

It has been proposed that the goals of rotator cuff repair are
as follows: (1) an initially strong construct with, (2) min-

imal gap formation, and (3) footprint stability that will

allow the tendon to heal to bone during the rehabilitation
period. Based on the results of this study, the transosseous-

equivalent/suture bridge repair with 4 stitches tied in the

medial row and maximal lateral strand utilization (Double
SB TOE/SB) is the strongest and has the greatest contact

area between the tendon and bone. The null hypothesis of

no differences in the biomechanical properties of these 4
TOE/SB techniques was rejected. The Double SB also

appeared to have no bursal sided gap formation compared

to the other techniques. Tying of the medial row on similar
suture constructs did not enhance tendon fixation as mea-

sured by this study.
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